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Abstract 

A forest fire can be a true ecological calamity, regardless of whether it is caused by natural forces or human 

actions. Although it is impossible to control nature, it is possible to map wildfire risk zones, and thence 

minimize the frequency of wildfires and prevent damages. Wildfire risk zones are locations where a fire is 

likely to start, and from where it can spread to other areas. Predictions of wildfires ignitions are critical aspects 

of biodiversity conservation and management, and they are only possible when a reliable fire risk zone map is 

available. I suggest in this paper that wildfire ignition risk computed from points of past wildfires obeys the 

same conceptual and mathematical rules of niche models commonly applied to points of sampled plants or 

animals. Therefore, niche modeling can also be an inductive approach for an effective and inexpensive 

computation of wildfires ignition and spreading likelihood. 
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1 Introduction 

Frequent occurrence of fires is one of the reasons for the degradation of forests worldwide. Fire is the biggest 

enemy of standing vegetation and wild animals. Small trees and regeneration are often impacted very 

adversely. Annual fires decrease the growth of grasses, herbs and shrubs, which may in turn result in increased 

soil erosion. Even big trees are not spared if the wildfire is severe. Ground fire destroys the organic matter, 

which is needed to maintain an optimum level of humus in the soil (Verma et al., 2012).  

The causes of the forest fires can be classified into three categories (a) natural causes, (b) 

intentionally/deliberately caused by man and (c) unintentionally/accidentally caused by man. Around 95% of 

the forest fires in Italy are anthropogenic in nature (Italian Ministry of the Environment, unpublished data), 

while this percentage reaches 99% for the Emilia-Romagna region (Ferrarini, 2010). Zone mapping of the 

wildfire risk is the first step to preventing disastrous and damaging incidents of forest fires. Fire risk is defined 

as the chance that a fire might start, hence it expresses an ignition probability index. There is general 

agreement on this definition among numerous international organizations, including the National Wildfire 

Coordinating Group (NWCG, 2003), the Society of American Foresters (1990) and the Food and Agriculture 

Organization (FAO, 1986). 

The fire proneness depends on many factors such as vegetation type/density/wetness, proximity to 

settlements and distances from roads. Human, animal and vehicular movements and activities on roads provide 

opportunities for accidental/man-made fires. Forests located near roads are therefore much more fire-prone. 
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Topography is related to wind behavior and, hence, affects the fire proneness of the area. Fire travels most 

rapidly up-slopes and least rapidly down-slopes. The climatic regime determines the vegetation in a region and 

hence, plays a dominant role in creating fire-prone areas. The drier the climate is in a particular region, the 

more fire prone the site will be.  

Many attempts to compute fire ignition risk from GIS commonly adopt the following approach (e.g. 

González-Olabarria et al., 2011): a) build GIS layers of wildfires predictors, b) weight previous layers after 

determining the influence of each factor on wildfire risk, c) the considered factors are then integrated for 

calculating the forest fire risk index.  

While there’s also a variety of approaches for wildfire risk computation based on remote sensing models 

(e.g. Knorr et al., 2011; Roy et al., 1991), in this paper I suggest that fire risk assessment from points of past 

wildfires obeys the same conceptual and mathematical rules of niche models commonly applied to points of 

sampled plants or animals. Therefore, niche modeling can be an effective and inexpensive approach to 

wildfires ignition and spreading likelihood as well. In addition it would represent an inductive modeling 

approach able to take into account past events of wildfires occurrences, and to integrate them with their 

plausible driving forces. In addition I suggest here that one risk map is not enough for proactive wildfire 

prevention. Due to the prevalently anthropogenic nature of wildfires, I suggest here that for each study area 24 

maps based on niche modeling of wildfires ignition risk would be much more predictive. 

 

2 Biodiversity Niche Modeling (BNM) 

Niche modeling, also known as species or habitat potential distribution modeling (Guisan et al., 2005), is 

commonly used to interpolate or extrapolate fundamental niche outside the locations where a species is present 

(i.e. realized niche), by relating species presence to environmental predictors. BNM is important for a range of 

land management activities. Examples include predicting the distribution of rare and threatened species and 

plant communities (Engler et al., 2004; Parolo et al., 2008), risk assessment of invasive species (Peterson, 

2003) and the appraisal of the likely intensity of biological responses to climate change (Thuiller, 2004).  

Various methods have been developed for BNM. Generalized linear models (GLM; McCullagh & Nelder, 

1989) and generalized additive models (GAM; Hastie & Tibshirani, 1986) require presence/absence data in 

order to generate discriminant functions rules. However, there is a growing interest in making use of just 

presence-only data. In fact, the large majority of available data consist of presence-only data sets, with no 

reliable data on where the species is truly absent. Hence, a second group of methods, including genetic 

algorithms (GARP; Stockwell and Peters, 1999) and Bioclim (Busby, 1991), is gaining more and more 

consideration. The recently proposed Maximum Entropy (Maxent) algorithm (Phillips et al., 2006) allows the 

use of presence-only data and categorical predictors.  

Maxent is a machine-learning technique based on the principle of maximum entropy (Jaynes, 1957). When 

approximating an unknown probability distribution. Maxent seeks the approximation that satisfies a set of 

constraints on the unknown distribution and that, subject to those restraints, maximizes the entropy of the 

resulting distribution. Given m sample points x1... xm (occurrence data), a study area composed of k pixels and a 

set of features f1 ... fn (environmental predictors), each feature fi assigns a real value fi(xj) to each point xj (e.g. 

the altitude of sample point xj). The empirical average of each feature fi  is thus defined as: 

     (1) 

57



Environmental Skeptics and Critics, 2012, 1(4):56-60 

 IAEES                                                                                                                                                                        www.iaees.org

Maxent searches for the probability distribution that maximizes 

   (2) 

under the constraints that for each feature fi 

   (3) 

for some constants βi (known as regularization value) and 

      (4) 

where pk(xj) is the unknown quantity (i.e. the probability to be assigned to each pixel). Without the 

regularization value (an empirically tuned value depending on the sample size), the computed distribution is 

likely to undergo overfitting. In the regularized case, it is used as a relaxed constraint where feature 

expectations are only close to empirical average over sample locations rather than exactly equal to them. 

Because these probabilities must sum to 1, each probability is extremely small. Hence, Maxent presents the 

probability distribution in a cumulative representation, where the value assigned to a pixel is the sum of the 

probabilities of that pixel and all other pixels with equal or lower probability, multiplied by 100 to give a 

percentage. Pixels with values close to 100 are the most suitable, while cells close to 0 are the least suitable 

within the study area. 

 

3 The Newly Poposed Wildfires Niche Modeling (WNM) 

Like the occurrences of plants and animals, points of past wildfires happen prevalently at locations where this 

physical process is more probable regardless of its natural or anthropogenic reason. 

Like the occurrences of plants and animals, locations of past wildfires can be compared with those driving 

forces that determine such probability (e.g., distance from roads, distance from settlements, slope, vegetation 

type; Fig. 1).  

Like the occurrences of plants and animals, likelihood of wildfires ignition can be computed using a niche 

model that relates past wildfires points with the selected driving forces (Fig. 1). Among niche models, Maxent 

has been shown to perform better than other algorithms. Elith et al. (2006) demonstrated that Maxent 

performed very well when compared to more established methods such as Bioclim, GARP, GAM and GLM. 

Hernandez et al. (2006) tested four modelling methods and showed that Maxent had the strongest performance 

among the tested methods, since it remained stable in prediction accuracy across all sample size categories. 

But unlike biodiversity niche modeling, risk of wildfires ignition strongly depends on the temporal interval 

as well (Ferrarini, 2010). Since almost 100% of wildfires are caused by man (intentionally/deliberately or 

unintentionally/accidentally), the period with higher probability usually corresponds to weekends (Sunday in 

particular, but also Saturday), when tourists accidentally give rise to wildfires ignitions, and pyromaniacs more 

frequently set dry grasses and bushes on fire. For wildfires, vegetation dryness, that mainly depends on 

climatic conditions (rainfalls and temperature), is fundamental. Since climatic conditions usually depend on 

months, WNM must consider both weekly and monthly aspects of wildfires ignition risk. This can be achieved 

by producing not one, but 2*12 risk maps where 2 is due to the two periods of the week (weekdays and 

weekend) while 12 corresponds to the months of the year. As a result, 24 maps based on Maxent modeling of 
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past wildfires could be very predictive of wildfires risk. To do this, wildfires ignition risk should be divided 

into 24 categories: 

January – weekdays, 

January – weekend (Saturday and Sunday), 

February – weekdays, 

February – weekend, 

etc., and of course each risk map must rely just on the wildfires points of that category. Then, depending on the 

day of the week and on the month, just one of the 24 risk maps should be used.  

Once areas with highest (or higher) Maxent ignition scores are calculated, spread simulations of wildfires 

can be initiated from those points using mean T° and rainfalls values of that month. Maxent scores of each risk 

map can also be classified into classes of risk, for instance: 

0-25%    low risk 

25-50%   moderate risk 

50-75%    high risk 

75-100%    extreme risk 

 

 

Fig. 1  The proposed framework for the computation of wildfires ignition and spreading risk. 

 

4 Conclusions 

Occurrences of wildfire is one of the reasons for the degradation of forests worldwide, and zone mapping of 

the wildfire risk is the first step to preventing disastrous and damaging incidents of wildfires. Besides the 

environmental damages, their economic cost is extremely elevated as well. 

I proposed here wildfire niche modelling (WNM) as an effective solution based on the syncretical use of 

niche modelling, commonly used for plants and animals, applied to occurences of past fires. It’s much more 

inexpensive than methods based on remote sensing, furthermore it is not prone to the subjectivity of methods 

based on weighted summation (or similar functions) of GIS layers, where the computation of weights is very 

ticklish. In WNM, weights are inductively achieved by past wildfires occurrences using the optimization 

procedure of Maxent modeling. In addition, WNM requires that wildfires ignition likelihood for each study 

area is computed taking also into account the temporal interval, due to the prevalently anthropogenic nature of 

wildfires. Once areas of higher wildfire risk are depicted, fire spread simulations can be initiated from those 

points, thus producing also reliable maps of wildfires spreading risk. 
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