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A deterministic SEIR model of rift valley fever (RVF) with climate change parameters was considered to compute the basic
reproduction number R

0
and investigate the impact of temperature and precipitation on R

0
. To study the effect of model

parameters to R
0
, sensitivity and elasticity analysis of R

0
were performed. When temperature and precipitation effects are not

considered,R
0
is more sensitive to the expected number of infectedAedes spp. due to one infected livestock andmore elastic to the

expected number of infected livestock due to one infectedAedes spp.When climatic data are used,R
0
is found to be more sensitive

and elastic to the expected number of infected eggs laid by Aedes spp. via transovarial transmission, followed by the expected
number of infected livestock due to one infected Aedes spp. and the expected number of infected Aedes spp. due to one infected
livestock for both regions Arusha and Dodoma. These results call for attention to parameters regarding incubation period, the
adequate contact rate of Aedes spp. and livestock, the infective periods of livestock and Aedes spp., and the vertical transmission in
Aedes species.

1. Introduction

Rift valley fever (RVF) is a viral disease that primarily affects
animals (such as sheep, horses, cattle, goats, camels, and
buffalos) and has the capacity to affect human beings. Rift
valley fever virus (RVFV) is a member of the Phlebovirus
genus family Bunyaviridae which has been isolated from at
least 40 mosquito species in the filed and other arthropods
[1, 2]. RVFV infection can cause severe disease in both
animals and humans, leading to high disease induced death
rate in livestock, long-term health effects in humans, and
economic destruction of people [3, 4]. Currently, two types
of vaccine for animals exist: a live vaccine and inactivated
vaccine. However, the current live vaccine cannot be used for
prevention, and prevention using the inactivated vaccine is
difficult to sustain in RVF affected countries for economic
reasons [3, 5].

RVF can be transmitted through an initial aerosol release
and subsequent transmission through the mosquito vector.
RVFV can remain dormant in Aedes spp. mosquito eggs

in dry soil for years. During periods of heavy rainfall,
larval habitats frequently become flooded, enabling the eggs
to hatch and the mosquito population to rapidly increase,
spreading the virus to animals on which they feed [6, 7].
Among animals, RVFV is spread primarily by the bite of
infected mosquitoes, mainly Aedes and Culex spp. which
can acquire the virus from feeding on an infected animal
[8–10]. The female Aedes spp. mosquito is also capable of
transmitting the virus directly to her offspring (vertical
transmission) via eggs leading to new generations of infected
mosquitoes hatching from eggs [11, 12].This is not the case for
Culex spp. mosquito.

RVFV can be transmitted to humans through the han-
dling of animal tissue during slaughtering or butchering,
assisting with animal births, conducting veterinary proce-
dures, or from the disposal of carcasses or fetuses. Human
infections have also resulted from the bites of infected
mosquito vector, and by ingesting unpasteurized or uncooked
milk and meat of infected animals [8–10, 13]. Transmission
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of RVFV by blood feeding flies is also possible. To date
no human-to-human transmission of RVF has been docu-
mented [12].

RVF was first reported in Kenya (Africa) in 1931 [8], and
it was primarily considered to be of sub-Saharan Africa until
September, 2000, when RVF cases were confirmed in Saudi
Arabia and Yemen (outside Africa) [14]. The recent outbreak
in East Africa is that of 2006-2007 where 684 cases and 155
deathswere confirmed inKenya, and 264 cases and 109 deaths
in Tanzania.There were outbreaks also in Somalia and Sudan
in the same period [12].

RVF outbreaks in East Africa have been largely correlated
with the unusual heavy rainfall associated with El Nin̈o
[15], which consequently flooded many Aedes spp. breeding
habitats. The hatching dynamics of Aedes spp. mosquitoes,
the main reservoir of RVF in Africa, strongly depends on
the rainfall pattern [1]. Eggs need to be flooded to hatch;
thus, heavy rainfall results in a massive hatching episode and,
consequently, the development of a large vector population.
Once infection has been amplified in livestock, secondary
vectors such as Culex spp. and other biting flies, which breed
in semipermanent pools of water, become involved in the
transmission of the virus [16].

Global temperature change, on the other hand, would
affect the biology of the vectors, including feeding rate and
egg production, and the length of the development cycle and
the extrinsic incubation period.Thismay result in high vector
density, an increased vector capacity to transmit the virus
and a higher transmission rate [16]. When temperature rises
above the biological maximum threshold for a species, it may
decrease the vector population. Sustained climate shifts may
lead to changes in the RVF burden in endemic areas and new
outbreaks in areas of similar conditions. Thus, modeling the
impact of climate change in the dynamics of RVF and its
interventions is important for understanding of the disease.

Mathematical epidemiological models have been devel-
oped to assess the dynamics of RVF. Gaff et al. [17] proposed
a theoretical model in a closed system which included two
mosquito populations Aedes and Culex spp. and a livestock
population. Their proposed model was a system of ordinary
differential equations developed to explain the behaviour of
the RVF transmission. The result of the development process
was the production of a first-time model of this disease.
The model was later modified by Gaff et al. [18] to assess
the relative effectiveness of RVF countermeasures such as
vector adulticide, vector larvicide, livestock vaccination, and
livestock culling.

A theoretical model involving mosquito population, live-
stock and human population has been developed to study
the dynamics of the disease using nonlinear differential
equations [19]. The results show that the disease prevalence
in both human and livestock is more sensitive to livestock
and human recruitment rates suggesting isolation of livestock
from human as a viable measure during the outbreak. The
initial transmission and disease prevalence were found to
be highly linked to mosquito population suggesting control
measures such as vector adulticides and larvicides to be
applied to reduce the mosquito population.

Fischer et al. [20] investigated the transmission poten-
tial of RVFV among livestock in the Netherlands. The
model included the effect of temperature on the biting
rate, mosquito population size, and the mortality of the
vectors. The results show that high degree of vaccination and
vector control strategy are needed to prevent RVF outbreaks.
Other studies include that of Xue et al. [21] who developed
a network-based metapopulation model approach to RVF
epidemics to assess the disease spread in both time and space
using network theory, Xue et al. [22] who investigate the
spread of RVFV when introduced in United States, Chitnis et
al. [23] who developed a model to assess the effect of vertical
transmission in vector-borne disease with applications to
RVF, and Niu et al. [24] who developed an epidemiological
model of RVF with spatial dynamics to study the spatial
effects.

In this paper, we propose amodel that assesses the impact
of climate change on the dynamics of RVF. The approach is
based on the previous model of RVF transmission byMpeshe
et al. [19] and modifications have been made to incorpo-
rate vertical transmission and climate-driven parameters. To
simplify the model, only temperature and precipitation are
considered in this study. While Aedes spp. mosquito eggs
are naturally infected by RVF virus via vertical transmission,
this is not a case for Culex spp. mosquito and, therefore, we
assume vertical transmission in our model only for Aedes
species. To accommodate the impact of climate change we
assert that temperature and precipitation can affect the laying
and hatching of the eggs as well as the death rate, the effective
contact rate, and the incubation period of the mosquitoes.
When the epizootic is very high human can also be a source
of infection for mosquitoes [25] and, therefore, also we assert
in ourmodel the human-to-mosquito transmission when the
mosquitoes feed on an infected human.

2. Materials and Methods

2.1. Model Formulation. The model considers three pop-
ulations: mosquitoes, livestock, and humans with disease-
dependent death rate for livestock and humans.Themosquito
population is subdivided into two: Aedes species and Culex
species. Due to vertical transmission in Aedes spp., we
include both infected and uninfected eggs in the model
for determining the effect of vertical transmission in the
initial transmission of RVF. The mode of transmission of
RVF virus from vector to host, host to host, and host to
vector is shown in the model flowchart shown by Figure 1.
The egg population of Aedes spp. consists of uninfected
eggs (𝑋

𝑎
) and infected eggs (𝑌

𝑎
). The population for adult

Aedes spp. consists of susceptible adults (𝑆
𝑎
), latently infected

adults (𝐸
𝑎
), and infectious adults (𝐼

𝑎
). The egg population

of Culex spp. consists of uninfected eggs (𝑋
𝑐
) only and the

population for adult Culex spp. consists of susceptible adults
(𝑆

𝑐
), latently infected adults (𝐸

𝑐
), and infectious adults (𝐼

𝑐
).

The livestock population consists of susceptible livestock
(𝑆

𝑙
), latently infected livestock (𝐸

𝑙
), infectious livestock (𝐼

𝑙
),

and recovered livestock (𝑅
𝑙
). The human population consists

of susceptible humans (𝑆
ℎ
), latently infected humans (𝐸

ℎ
),
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Figure 1: Flow diagram for the RVF model.

infectious humans (𝐼
ℎ
) and recovered humans (𝑅

ℎ
). Table 1

shows the model parameters and their description as they
have been used in this work. 𝑇 and 𝑃 represent temperature
and precipitation, respectively.

The epidemiology cycle of RVF presented by Balenghien
et al. [26] and Chevalier et al. [27] is here applied to develop
the flow diagram shown by Figure 1. The inclusion of the
transmission dynamics of RVF from Aedes spp. to human
and vice versa is due to the fact that some Aedes spp. such
asAedes vexans,Aedes aegpti,Aedes albopictus,Ae. ochraceus,
Ae. mcintonshi, and Ae. dalzieli and many others numerously
feed on humans, and therefore has the capacity to cause
infection to human [26–31].

Using the parameters in Table 1 and the model flow
diagram in Figure 1, an SEIR model is derived on the basis of
the explanations above using first-order nonlinear ordinary
differential equations as follows:
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= 𝑏

𝑎
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) − ℎ
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To test whether themodel is well posed epidemiologically
and mathematically, we need to investigate the feasibility of
the model solution. Since 𝑅

𝑙
and 𝑅

ℎ
can be determined when

𝑆

𝑙
, 𝑆

ℎ
, 𝐸

𝑙
, 𝐸

ℎ
, 𝐼

𝑙
, and 𝐼

ℎ
are known, without loss of generality,

we omit the expression for 𝑑𝑅
𝑙
/𝑑𝑡 and 𝑑𝑅

ℎ
/𝑑𝑡 and write the

system in compact form as

𝑑𝑋

𝑑𝑡

= 𝑀 (𝑥)𝑋 + 𝐹,
(5)
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Table 1: Parameters used in the model formulation and their description.

Parameter Description Dependent on climate change
1/ℎ

𝑎
(𝑇, 𝑃) Development time of Aedesmosquitoes Temperature and precipitation

1/ℎ

𝑐
(𝑇, 𝑃) Development rate of Culexmosquitoes Temperature and precipitation

𝑏

𝑎
(𝑇, 𝑃) Number of Aedes eggs laid per day Temperature and precipitation

𝑏

𝑐
(𝑇, 𝑃) Number of Culex eggs laid per day Temperature and precipitation

𝑏

ℎ
Daily birth rate in humans Not considered

𝑏

𝑙
Daily birth rate in livestock Not considered

1/𝜇

𝑎
(𝑇) Lifespan of Aedesmosquitoes Temperature

1/𝜇

𝑐
(𝑇) Lifespan of Culexmosquitoes Temperature

1/𝜇

ℎ
Lifespan of humans Not considered

1/𝜇

𝑙
Lifespan of livestock Not considered

1/𝜀

𝑎
(𝑇) Incubation period of Aedesmosquitoes Temperature

1/𝜀

𝑐
(𝑇) Incubation period of Culexmosquitoes Temperature

1/𝜀

ℎ
Incubation period of humans Not considered

1/𝜀

𝑙
Incubation period of livestock Not considered

𝜙

𝑙
Death rate of livestock due to disease Not considered

𝜙

ℎ
Death rate of humans due to disease Not considered

1/𝛾

𝑙
Infectious period in livestock Not considered

1/𝛾

ℎ
Infectious period in humans Not considered

𝜆al(𝑇) Adequate contact rate: Aedes to livestock Temperature
𝜆cl(𝑇) Adequate contact rate: Culex to livestock Temperature
𝜆la(𝑇) Adequate contact rate: livestock to Aedes Temperature
𝜆lc(𝑇) Adequate contact rate: livestock to Culex Temperature
𝜆ah(𝑇) Adequate contact rate: Aedes to humans Temperature
𝜆ch(𝑇) Adequate contact rate: Culex to humans Temperature
𝜆ha(𝑇) Adequate contact rate: humans to Aedes Temperature
𝜆hc(𝑇) Adequate contact rate: humans to Culex Temperature
𝜆lh Adequate contact rate: livestock to humans Not considered
𝑓

𝑎
Vertical transmission rate in Aedes Not considered

where 𝑋 = (𝑋

𝑎
, 𝑌

𝑎
, 𝑆

𝑎
, 𝐸

𝑎
, 𝐼

𝑎
, 𝑋

𝑐
, 𝑆

𝑐
, 𝐸

𝑐
, 𝐼

𝑐
, 𝑆

𝑙
, 𝐸

𝑙
, 𝐼

𝑙
, 𝑆

ℎ
, 𝐸
ℎ
,

𝐼

ℎ
)

𝑇, 𝑀(𝑥) is a 15 by 15 matrix, and 𝐹 is a column matrix.
Substituting 𝐼

𝑎
= 𝑁

𝑎
− (𝑆

𝑎
+ 𝐸

𝑎
) in 𝑑𝑋

𝑎
/𝑑𝑡, we have

𝑑𝑋

𝑎

𝑑𝑡

= 𝑏

𝑎 (
𝑇, 𝑃)𝑁𝑎

(1 − 𝑓

𝑎
) + 𝑏

𝑎
𝑓

𝑎
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𝑎
+ 𝐸

𝑎
) − ℎ

𝑎 (
𝑇, 𝑃)𝑋𝑎

,

(6)

and, therefore,

𝑀(𝑥) =

[

[

𝑀

1
(𝑥) 0 0

0 𝑀

2
(𝑥) 0

0 0 𝑀

3
(𝑥)

]

]

, (7)

where

𝑀

1
(𝑥) =

[

[

[

[

[

[

−ℎ

𝑎
(𝑇, 𝑃) 0 𝑏

𝑎
(𝑇, 𝑃) 𝑓

𝑎
𝑏

𝑎
(𝑇, 𝑃) 𝑓

𝑎
0

0 −ℎ

𝑎
(𝑇, 𝑃) 0 0 𝑏

𝑎
(𝑇, 𝑃) 𝑓

𝑎

ℎ

𝑎
(𝑇, 𝑃) 0 − (𝜇

𝑎
+ 𝐴) 0 0

0 0 𝐴 − (𝜀

𝑎 (
𝑇, 𝑃) + 𝜇𝑎 (

𝑇, 𝑃)) 0

0 ℎ

𝑎 (
𝑇, 𝑃) 0 𝜀

𝑎 (
𝑇, 𝑃) −𝜇

𝑎 (
𝑇, 𝑃)

]

]

]

]

]

]

,

𝑀

2
(𝑥) =

[

[

[

[

−ℎ

𝑐
(𝑇, 𝑃) 0 0 0

ℎ

𝑐 (
𝑇, 𝑃) − (𝜇

𝑐 (
𝑇, 𝑃) + 𝐵) 0 0

0 𝐵 − (𝜀

𝑐
(𝑇, 𝑃) + 𝜇

𝑐
(𝑇, 𝑃)) 0

0 0 𝜀

𝑐
(𝑇, 𝑃) −𝜇

𝑐
(𝑇, 𝑃)

]

]

]

]

,

𝑀

3 (
𝑥) =

[

[

[

[

[

[

[

[

− (𝜇

𝑙
+ 𝐶) 0 0 0 0 0

𝐶 − (𝜀

𝑙
+ 𝜇

𝑙
) 0 0 0 0

0 𝜀

𝑙
− (𝜇

𝑙
+ 𝜙

𝑙
+ 𝛾

𝑙
) 0 0 0

0 0 0 − (𝜇

ℎ
+ 𝐷) 0 0

0 0 0 𝐷 − (𝜀

ℎ
+ 𝜇

ℎ
) 0

0 0 0 0 𝜀

ℎ
− (𝜇

ℎ
+ 𝜙

ℎ
+ 𝛾

ℎ
)

]

]

]

]

]

]

]

]

(8)
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with

𝐴 = 𝜆

𝑙𝑎 (
𝑇)

𝐼

𝑙

𝑁

𝑙

+ 𝜆

ℎ𝑎 (
𝑇)

𝐼

ℎ

𝑁

ℎ

, (9a)

𝐵 = 𝜆

𝑙𝑐 (
𝑇)

𝐼

𝑙

𝑁

𝑙

+ 𝜆

ℎ𝑐 (
𝑇)

𝐼

ℎ

𝑁

ℎ

, (9b)

𝐶 = 𝜆

𝑎𝑙
(𝑇)

𝐼

𝑎

𝑁

𝑎

+ 𝜆

𝑐𝑙
(𝑇)

𝐼

𝑐

𝑁

𝑐

, (9c)

𝐷 = 𝜆

𝑙ℎ (
𝑇)

𝐼

𝑙

𝑁

𝑙

+ 𝜆

𝑎ℎ (
𝑇)

𝐼

𝑎

𝑁

𝑎

+ 𝜆

𝑐ℎ (
𝑇)

𝐼

𝑐

𝑁

𝑐

, (9d)

𝐹 = (𝑏

𝑎
(𝑇, 𝑃)𝑁𝑎 (1 − 𝑓

𝑎
) , 0, 0, 0, 0, 𝑏

𝑐
(𝑇, 𝑃)𝑁

𝑐
,

0, 0, 0, 𝑏

𝑙
𝑁

𝑙
, 0, 0, 𝑏

ℎ
𝑁

ℎ
, 0, 0)

𝑇
≥ 0.

(10)

Combining all together, the matrix 𝑀(𝑥) is a Metzler
matrix for all R15

+
. Therefore, the model system is positively

invariant in R15
+
, and 𝐹 is Lipschitz continuous. Thus, the

feasible region for the model system is the set

D = {(𝑋

𝑎
, 𝑌

𝑎
, 𝑆

𝑎
, 𝐸

𝑎
, 𝐼

𝑎
, 𝑋

𝑐
, 𝑆

𝑐
, 𝐸

𝑐
, 𝐼

𝑐
, 𝑆

𝑙
, 𝐸

𝑙
, 𝐼

𝑙
, 𝑆

ℎ
, 𝐸

ℎ
, 𝐼

ℎ
)

≥ 0 ∈ R
15

+
} .

(11)

That is, the solution remains in the feasible regionD if it starts
in this region. Hence, it is sufficient to study the dynamics of
the model inD.

2.2. Climate Driven Parameters. Several parameters related
tomosquito vector, such as the hatching rate, vectormortality
and longevity, biting rate, and extrinsic incubation period,
depend on the temperature and precipitation. Using the
existing studies and information from Aedes vexans, Aedes
aegypti, Culex pipiens, and Culex quinquefasciatus [20, 32–
34] which are potential vectors of RVF, we generalise the
following relations for Aedes and Culex spp. mosquitoes.

2.2.1. Hatching Rate or Mosquito Birth Rate, ℎ(𝑇, 𝑃). This
is the number of eggs hatching into adult mosquitoes at a
certain period of time which we also refer to as the mosquito
birth rate. It will depend on the the daily survival probability𝜌
from eggs to adults and the duration𝑑 it takes to develop from
eggs to adults. The daily survival probability is assumed to
depend independently on temperature, precipitation/rainfall,
and prolonged period of desiccation. Thus,

𝜌 (𝑇, 𝑃,𝐷) = 𝜌 (𝑇) 𝜌 (𝑃) 𝜌 (𝐷) , (12)

where 𝜌(𝑇) is the daily survival probability of immaturity due
to temperature effect 𝑇; 𝜌(𝑃) is the daily survival probability
of immaturity due to precipitation effect 𝑃; and 𝜌(𝐷) is the
daily survival probability of immaturity due to desiccation
effect 𝐷. The duration of maturation 𝑑 is assumed to depend
on temperature. Therefore, the hatching rate is given by

ℎ (𝑇, 𝑃,𝐷) =

𝜌 (𝑇, 𝑃,𝐷)

𝑑 (𝑇)

. (13)

2.2.2. Survival Probability due to Temperature Effect 𝜌(𝑇).
The daily survival probability 𝜌(𝑇) is affected by the duration
of maturation 𝑑(𝑇) in exponential form, that is,

𝜌 (𝑇) = exp{− 1

𝑑 (𝑇)

} . (14)

Fitting the data from [34] we obtain that 1/𝑑(𝑇) = 𝛼

1
𝑇

2
+

𝛼

2
𝑇 + 𝛼

3
for Culex spp. and 1/𝑑(𝑇) = 𝛼

1
𝑇

3
+ 𝛼

2
𝑇

2
+ 𝛼

3
𝑇 +

𝛼

4
for Aedes spp., where 𝛼

1
= 0.0095, 𝛼

2
= −0.4684, 𝛼

3
=

5.8343 for Culex spp. and 𝛼
1
= −0.0025, 𝛼

2
= 0.2069, 𝛼

3
=

−5.5285, 𝛼

4
= 48.2951 for Aedes spp.

2.2.3. Survival Probability due to Precipitation Effect 𝜌(𝑃).
Precipitation or rainfall is important in creating breeding sites
for mosquitoes and causing massive hatching. But excessive
rainfall increasesmortality of immature due to flushing effect.
Since rainfall has two effects, that is, positive and negative
effect, we use the idea from [35] and assume the daily survival
probability of immaturity due to precipitation effect to be

𝜌 (𝑃) = (1 − exp {−𝛽
1
(𝑃 − 𝑃

1
)}) (1 − exp {−𝛽

2
(𝑃

2
− 𝑃)}) ,

(15)

where 𝛽
𝑖
(𝑖 = 1, 2) are the sensitivity parameters; 𝑃

1
is

the minimum amount of rainfall to support maturity; and
𝑃

2
is the maximum amount of rainfall which reduces their

survival. For computational purposes we set 𝜌(𝑃) = 0 for
𝑃 < 𝑃

1
and for 𝑃 > 𝑃

2
.

2.2.4. Survival Probability due to Desiccation Effect 𝜌(𝐷).
Lack of precipitation affects the development of the imma-
ture. Following the approach by [32] we define the daily
survival probability due desiccation as

𝜌 (𝐷

𝑡
) =

exp (−𝜔𝐷
𝑡
)

𝑐 + exp (−𝜔𝐷
𝑡
)

, (16)

where𝐷 depends on precipitation 𝑃 and is defined as

𝐷

𝑡
= {

𝐷

𝑡−1
+ 1 𝑃

𝑡
≤ 𝑃th

0 otherwise,
(17)

where 𝑃th is the threshold precipitation; 𝐷
𝑡
is the number of

consecutive days up to time 𝑡 when the precipitation 𝑃
𝑡
was

below the threshold 𝑃th; 𝜔 is the sensitivity parameter; and
𝑐 is the constant that ensures that 𝜌(𝐷

𝑡
) is close to 1 at small

values of𝐷
𝑡
.

2.2.5. Daily Egg Laying Rate 𝑏(𝑇). The egg laying rate is
assumed to depend on the moisture index. High moisture
index correlates with high egg laying rate [33]. To model the
daily egg laying rate we employ the equation derived by Gong
et al. [33] that

𝑏 (𝑇, 𝑃) = Baseline Egg rate

+

𝐸max
1 + exp {− (Moisture Index − 𝐸mean) /𝐸var}

,

(18)
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where Baseline Egg rate is the baseline for fecundity, 𝐸max is
the maximum daily egg laying rate, 𝐸mean is the mean of daily
egg laying rate, and 𝐸var is the variance function.

To compute the moisture index, we apply Thornthwaite’s
moisture index [36] that

Moisture Index (𝐼
𝑚
) = 100 (

𝑟

𝐸

0

− 1) , (19)

where 𝑟 is the precipitation rate, and𝐸
0
is the potential evapo-

transpiration. In absence of the potential evapotranspiration,
Linacre’s method [37] can be applied. That is,

𝐸

0
=

700𝑇

𝑚
/ (100 − 𝐴) + 15 (𝑇 − 𝑇

𝑑
)

(80 − 𝑇)

mmday−1, (20)

where, 𝑇
𝑚
= 𝑇 + 0.00ℎ with ℎ being the elevation (metres), 𝑇

is the mean temperature,𝐴 is the latitude (degrees), and 𝑇
𝑑
is

the mean dew-point.

2.2.6. Longevity ofMosquitoes 1/𝜇(𝑇). Different studies show
that the longevity of mature mosquitoes also depends on the
temperature. To model the longevity, equations deduced by
Fischer et al. [20] are applied. That is,

1

𝜇 (𝑇)

= 𝑎

0
− 𝑎

1
𝑇, (21)

where 𝑎
0
= 25.8, 𝑎

1
= 0.45 for Aedes spp., and 𝑎

0
= 69.1, 𝑎

1
=

2.14 for Culex spp.

2.2.7. Extrinsic Incubation Period ofMosquitoes 1/𝜀(𝑇). Extr-
insic incubation period is the time between a blood meal on
an infections host and the first successful transmission from
vector to host during another blood meal. We also adapt the
expressions by Fischer et al. [20]. That is,

1

𝜀 (𝑇)

= 𝜀max − 𝜀slope𝑇, (22)

where 𝜀max = 18.9, 𝜀slope = 0.30 for Aedes spp., and 𝜀max =
11.3, 𝜀slope = 0.30 for Culex spp.

2.2.8. Adequate Contact Rate 𝜆(𝑇). Adequate contact rate is
contact which is sufficient for transmission of the infection
from an infective to a susceptible. Thus, in this study

adequate contact rate

= biting rate × probability of transmission.
(23)

The biting rate depends on temperature, and we assume a
linear relationship as in Fischer et al. [20]. That is,

𝑎 (𝑇) = 𝑎slope (𝑇 − 𝑇min) , (24)

where 𝑎slope = 0.0173, 𝑇min = 9.60 for all mosquito species.
Assume that the probability of transmission is independent
to temperature, we have

𝜆

𝑎𝑙
(𝑇) = 𝑎slope (𝑇 − 𝑇min) 𝜌𝑎𝑙, 𝜌

𝑎𝑙
= 0.70, (25a)

𝜆

𝑐𝑙 (
𝑇) = 𝑎slope (𝑇 − 𝑇min) 𝜌𝑐𝑙, 𝜌

𝑐𝑙
= 0.78, (25b)

𝜆

𝑙𝑎 (
𝑇) = 𝑎slope (𝑇 − 𝑇min) 𝜌𝑙𝑎, 𝜌

𝑙𝑎
= 0.38, (25c)

𝜆

𝑙𝑐 (
𝑇) = 𝑎slope (𝑇 − 𝑇min) 𝜌𝑙𝑐, 𝜌

𝑙𝑐
= 0.22, (25d)

𝜆

𝑎ℎ (
𝑇) = 𝑎slope (𝑇 − 𝑇min) 𝜌𝑎ℎ, 𝜌

𝑎ℎ
= 0.01, (25e)

𝜆

ℎ𝑎 (
𝑇) = 𝑎slope (𝑇 − 𝑇min) 𝜌ℎ𝑎, 𝜌

ℎ𝑎
= 0.05, (25f)

𝜆

𝑐ℎ (
𝑇) = 𝑎slope (𝑇 − 𝑇min) 𝜌𝑐ℎ, 𝜌

𝑐ℎ
= 0.01, (25g)

𝜆

ℎ𝑐 (
𝑇) = 𝑎slope (𝑇 − 𝑇min) 𝜌ℎ𝑐, 𝜌

ℎ𝑐
= 0.015. (25h)

2.3. The Basic Reproduction Number. Thebasic reproduction
numberR

0
is computed using themethod of next generation

matrix as outlined by [38]. Let 𝑘
𝑖𝑗
be the expected number of

the new cases of type 𝑖 caused by one infected individual of
type 𝑗, during the entire period of infectiousness. Define a
matrix 𝐾 whose entries are 𝑘

𝑖𝑗
, that is, 𝐾 = [𝑘

𝑖𝑗
]. Then,R

0
=

𝜌(𝐾), where 𝜌(𝐾) is spectral radius of 𝐾. For our model, we
define four type-at-infection consisting of two vectors and
two hosts, namely, Aedes spp. (type 1), Culex spp. (type 2),
livestock (type 3), and humans (type 4). The resulting next
generation matrix is

𝐾 =

[

[

[

[

𝑘

11
𝑘

12
𝑘

13
𝑘

14

𝑘

21
𝑘

22
𝑘

23
𝑘

24

𝑘

31
𝑘

32
𝑘

33
𝑘

34

𝑘

41
𝑘

42
𝑘

43
𝑘

44

]

]

]

]

, (26)

where 𝑘
11

is the expected number of infected eggs laid by
Aedes spp. via transovarial transmission, 𝑘

12
is the expected

number of infected Aedes spp. due to one infected Culex, 𝑘
21

is the expected number of infected Culex spp. due to one
infected Aedes spp., 𝑘

13
is the expected number of infected

Aedes spp. due to one infected livestock, 𝑘
31

is the expected
number of infected livestock due to one infected Aedes spp.,
𝑘

14
is the expected number of infected Aedes spp. due to

one infected human, 𝑘
41

is the expected number of infected
humans due to one infected Aedes spp., 𝑘

22
is the expected

number of infected eggs laid by Culex spp. via transovarial
transmission, 𝑘

23
is the expected number of infected Culex

spp. due to one infected livestock, 𝑘
32
is the expected number

of infected livestock due to one infected Culex spp., 𝑘
24
is the

expected number of infected Culex spp. due to one infected
human, 𝑘

42
is the expected number of infected humans due

to one infected Culex spp., 𝑘
33

is the expected number of
infected livestock due to one infected livestock, 𝑘

34
is the

expected number of infected livestock due to one infected
human, 𝑘

43
is the expected number of infected humans due

to one infected livestock, and and 𝑘
44
is the expected number

of infected humans due to one infected human.
Since there is no vertical transmission in Culex spp., then

𝑘

22
= 0. The same applies for 𝑘

33
and 𝑘

44
. Also Aedes spp.
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cannot infectCulex spp. and vice versa; therefore, 𝑘
12
= 𝑘

21
=

0. Humans cannot infect livestock, so 𝑘
34
= 0. Hence, we have

𝐾 =

[

[

[

[

𝑘

11
0 𝑘

13
𝑘

14

0 0 𝑘

23
𝑘

24

𝑘

31
𝑘

32
0 0

𝑘

41
𝑘

42
𝑘

43
0

]

]

]

]

. (27)

The entry 𝑘
𝑖𝑗
depends on the probability that the individual

of type 𝑗 survives the incubation, the adequate contact rate:
individual type 𝑗 to individual type 𝑖, and the infective period
of individual of type 𝑗. For example, 𝑘

13
will depend on the

probability that livestock survives the incubation period, the
adequate contact rate from livestock to Aedes spp., and the
infective period of livestock.We therefore derive the 𝑘

𝑖𝑗
values

as follows:

𝑘

11
=

𝑏

𝑎
(𝑇, 𝑃) 𝑓

𝑎

𝜇

𝑎

, 𝑘

13
= (

𝜀

𝑙

𝜀

𝑙
+ 𝜇

𝑙

)(

𝜆

𝑙𝑎
(𝑇)

𝜇

𝑙
+ 𝜙

𝑙
+ 𝛾

𝑙

) ,

(28a)

𝑘

14
= (

𝜀

ℎ

𝜀

ℎ
+ 𝜇

ℎ

)(

𝜆

ℎ𝑎
(𝑇)

𝜇

ℎ
+ 𝜙

ℎ
+ 𝛾

ℎ

) ,

𝑘

23
= (

𝜀

𝑙

𝜀

𝑙
+ 𝜇

𝑙

)(

𝜆

𝑙𝑐
(𝑇)

𝜇

𝑙
+ 𝜙

𝑙
+ 𝛾

𝑙

) ,

(28b)

𝑘

24
= (

𝜀

ℎ

𝜀

ℎ
+ 𝜇

ℎ

)(

𝜆

ℎ𝑐
(𝑇)

𝜇

ℎ
+ 𝜙

ℎ
+ 𝛾

ℎ

) ,

𝑘

31
= (

𝜀

𝑎
(𝑇)

𝜀

𝑎 (
𝑇) + 𝜇𝑎 (

𝑇)

)(

𝜆

𝑎𝑙
(𝑇)

𝜇

𝑎 (
𝑇)

) ,

(28c)

𝑘

32
= (

𝜀

𝑐
(𝑇)

𝜀

𝑐 (
𝑇) + 𝜇𝑐 (

𝑇)

)(

𝜆

𝑐𝑙
(𝑇)

𝜇

𝑐 (
𝑇)

) ,

𝑘

41
= (

𝜀

𝑎
(𝑇)

𝜀

𝑎 (
𝑇) + 𝜇𝑎 (

𝑇)

)(

𝜆

𝑎ℎ
(𝑇)

𝜇

𝑎 (
𝑇)

) ,

(28d)

𝑘

42
= (

𝜀

𝑐
(𝑇)

𝜀

𝑐 (
𝑇) + 𝜇𝑐 (

𝑇)

)(

𝜆

𝑐ℎ
(𝑇)

𝜇

𝑐 (
𝑇)

) ,

𝑘

43
= (

𝜀

𝑙

𝜀

𝑙
+ 𝜇

𝑙

)(

𝜆

𝑙ℎ
(𝑇)

𝜇

𝑙
+ 𝜙

𝑙
+ 𝛾

𝑙

) .

(28e)

2.4. Sensitivity and Elasticity Analyses of R
0
. Sensitivities

quantify how R
0
changes in response to the small shifts

in the value of a parameter, while elasticities quantify the
proportional change in R

0
in response to the proportional

change in a parameter. Both sensitivity and elasticity values
can be used to judge which parameters are important to
measure accurately and where variation in parameters will
translate into variation inR

0
.

Caswell [39] developed a way to quantify sensitivity and
elasticity of the growth rate 𝜆 to changes in vital rates 𝑎

𝑖𝑗

where 𝑎
𝑖𝑗
are the entries of population matrix 𝐴. That is, the

sensitivity of the growth rate 𝜆 to changes in vital rates 𝑎
𝑖𝑗
is

given by

𝑠

𝑖𝑗
=

𝜕𝜆

𝜕𝑎

𝑖𝑗

=

V
𝑖
𝑤

𝑗

⟨w, k⟩
, (29)

wherew and v are the right and left eigenvectors, respectively,
corresponding to the dominant eigenvalue 𝜆 of the matrix
𝐴, and ⟨w, k⟩ is the dot product of w and v. In case 𝑎

𝑖𝑗
is a

function of other lower-level parameters, then, the chain rule
can be applied to estimate the sensitivity of 𝜆 to changes in
any model parameter 𝑝 as

𝑠 (𝑝) =

𝜕𝜆

𝜕𝑝

= ∑

𝑖𝑗

𝜕𝜆

𝜕𝑎

𝑖𝑗

𝜕𝑎

𝑖𝑗

𝜕𝑝

. (30)

The elasticity of the growth rate 𝜆 to changes in vital rates
𝑎

𝑖𝑗
, the entries of population matrix 𝐴, is given by

𝑒

𝑖𝑗
=

𝜕 log 𝜆
𝜕 log 𝑎

𝑖𝑗

=

𝑎

𝑖𝑗

𝜆

𝜕𝜆

𝜕𝑎

𝑖𝑗

. (31)

For 𝑎
𝑖𝑗
a function of other lower-level parameters 𝑝, the

elasticity is given by

𝑒 (𝑝) =

𝑝

𝜆

𝜕𝜆

𝜕𝑝

=

𝑝

𝜆

∑

𝑖𝑗

𝜕𝜆

𝜕𝑎

𝑖𝑗

𝜕𝑎

𝑖𝑗

𝜕𝑝

. (32)

The theory of sensitivity analysis developed for thematrix
models by Caswell [39] can be extended to the diseasemodels
to study the sensitivity and elasticity of R

0
to the changes

in the reproduction numbers 𝑘
𝑖𝑗
or the parameters defining

them.Thus, the sensitivity 𝑠
𝑖𝑗
of amatrix element 𝑘

𝑖𝑗
is defined

as the change in the eigenvalue (R
0
) due to change in 𝑘

𝑖𝑗
given

by

𝑠

𝑖𝑗
=

𝜕R
0

𝜕𝑘

𝑖𝑗

. (33)

For individual parameter, the sensitivity 𝑠(𝑝) is given by

𝑠 (𝑝) = ∑

𝑖𝑗

𝜕R
0

𝜕𝑘

𝑖𝑗

𝜕𝑘

𝑖𝑗

𝜕𝑝

. (34)

The elasticity 𝑒
𝑖𝑗
of a matrix element 𝑘

𝑖𝑗
is defined as

𝑒

𝑖𝑗
=

𝑘

𝑖𝑗

R
0

𝜕R
0

𝜕𝑘

𝑖𝑗

. (35)

For individual parameters 𝑝, the elasticity is given by

𝑒 (𝑝) =

𝑝

R
0

∑

𝑖𝑗

𝜕R
0

𝜕𝑘

𝑖𝑗

𝜕𝑘

𝑖𝑗

𝜕𝑝

. (36)

In order to study the impact of climate change to climate-
driven parameter in the distribution of R

0
we use climate

data from two different regions in Tanzania, namely, Arusha
and Dodoma for the 2006-2007 outbreak. According to
WHO [12], RVF was reported in 10 out of the 21 regions of
Tanzania where 12 cases were reported in Arusha region, 1 in
Dar es Salaam, 156 inDodoma, 4 in Iringa, 6 inManyara, 50 in
Morogoro, 5 inMwanza, 5 in the Pwani, 24 in Singida, and 1 in
Tanga regions. From the data we find that Dodoma has more
than 50% of the total cases giving a justification for being a
case of study, and Arusha is considered in this study because
the first case was reported in January 2007 in this region.
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Table 2: Parameters with their estimated lower and higher values
without considering impact of climate change.

Parameter low value high value Reference
1/𝑏

𝑎
100 200 Assumed

1/𝜇

𝑎
3 days 60 days [17]

1/𝜇

𝑐
3 days 60 days [17]

1/𝜇

ℎ
40 yrs 60 yrs [19]

1/𝜇

𝑙
1 yr 10 yrs [40]

1/𝜀

𝑎
4 days 8 days [19]

1/𝜀

𝑐
4 days 8 days [19]

1/𝜀

ℎ
2 day 6 days [19]

1/𝜀

𝑙
1 day 6 days [19]

𝜙

𝑙
0.025 0.10 [19]

𝜙

ℎ
0.01 0.10 [19]

𝑓

𝑎
0.05 0.1 [18]

1/𝛾

𝑙
1 day 5 days [19]

1/𝛾

ℎ
4 days 7 days [19]

𝜆al 0.15 0.48 [18]
𝜆

𝑐𝑙
0.05 0.13 [18]

𝜆la 0.15 0.395 [18]
𝜆lc 0.15 0.56 [18]
𝜆ah 0.001 0.002 [22]
𝜆ch 0.0005 0.001 [22]
𝜆ha 0.001 0.0015 Assumed
𝜆hc 0.0015 0.002 Assumed
𝜆lh 0.001 0.002 [19]

3. Results and Discussion

In this section we first present the result for R
0
when the

parameters are assumed to be independent of climate change.
Then, we will compute the numerical value for R

0
when

climate change is considered to climate-driven parameters.
Sensitivity and elasticity analysis results in both cases will be
presented. Table 2 shows the parameter values for low range
and high range which are used to compute the numerical
value for R

0
when temperature and precipitation effects are

not considered.
When we substitute the values in Table 2 to the expres-

sions of the elements of matrix𝐾 and computeR
0
, we obtain

that for low parameter values R
0
= 0.1941 and for high

parameter valuesR
0
= 6.8071.

When climate change parameters were evaluated using
the climate variable the value of R

0
change from 0.4747

to 14.2007 in Arusha with the highest value marked in
November 2006 (= 14.2007) followed by December 2006
(= 14.1530). The value of R

0
dropped below 1 in January

2007 and February 2007, but it rose again in March, April,
and May. Figure 2(a) shows the distribution ofR

0
from July

2006 to June 2007 in Arusha region.
In Dodoma, the highest R

0
was marked February 2007

(= 12.7438) followed by January 2007 (= 12.7368) then
March 2007 (= 7.9899) and December 2006 (= 1.5088) as
Figure 2(b) indicates.

Table 3: Sensitivity and elasticity ofR
0
for low and high parameter

values.

Parameter Sensitivity Elasticity
Low parameter values

𝑘

11
0.37750 0.00292

𝑘

13
0.49913 0.37438

𝑘

14
0.00629 0.00012

𝑘

23
0.16513 0.12386

𝑘

24
0.00208 0.00006

𝑘

31
0.37679 0.37443

𝑘

32
0.37399 0.12388

𝑘

41
0.01118 0.00007

𝑘

42
0.01109 0.00003

𝑘

43
0.01497 0.00008

High parameter values
𝑘

11
0.36274 0.00160

𝑘

13
1.87148 0.36107

𝑘

14
0.01149 0.00001

𝑘

23
0.50469 0.13804

𝑘

24
0.00310 0.00000

𝑘

31
0.09672 0.36107

𝑘

32
0.13653 0.13804

𝑘

41
0.00045 0.00001

𝑘

42
0.00063 0.00000

𝑘

43
0.00231 0.00000

Table 4: Sensitivity and elasticity of R
0
for Dodoma and Arusha

climate data.

Parameter Sensitivity Elasticity
Dodoma

𝑘

11
0.99874 0.99748

𝑘

13
0.12996 0.00126

𝑘

14
0.00020 0.00000

𝑘

23
0.00010 0.00000

𝑘

24
0.00000 0.00000

𝑘

31
0.00971 0.00126

𝑘

32
0.00001 0.00000

𝑘

41
0.00010 0.00000

𝑘

42
0.00000 0.00000

𝑘

43
0.00001 0.00000
Arusha

𝑘

11
0.99921 0.99841

𝑘

13
0.10903 0.00079

𝑘

14
0.00016 0.00000

𝑘

23
0.00012 0.00000

𝑘

24
0.00000 0.00000

𝑘

31
0.00727 0.00079

𝑘

32
0.00000 0.00000

𝑘

41
0.00008 0.00000

𝑘

42
0.00000 0.00000

𝑘

43
0.00001 0.00000
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Figure 2: Distribution ofR
0
for climatic data in Arusha and Dodoma.
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(b) R0 and precipitation for Dodoma

Figure 3:R
0
and precipitation for climatic data in Arusha and Dodoma.

While it is clear thatR
0
increaseswith increase in rainfall,

it is not the case for temperature where we experience high
R
0
for low temperatures. Figure 3 shows the plots forR

0
and

precipitation over months, and Figure 4 shows the plots for
R
0
and temperature over months.
Table 3 shows the sensitivity and elasticity values ofR

0
, to

both low and high parameter values. For both low and high
parameter values, R

0
is most sensitive to 𝑘

13
, the expected

number of infected Aedes spp. Due to one infected livestock,
and to and most elastic to 𝑘

31
, the expected number of

infected livestock due to one infected Aedes spp. Table 3
shows the sensitivity and elasticity values of R

0
for low

and high parameter values, and Figure 5 shows the plots of
sensitivity and elasticity values plotted against the parameter
𝑘

𝑖𝑗
. The results suggest that attention should be given to

parameters regarding incubation period, the adequate con-
tact rate, and the infective period of livestock and Aedes spp.

When climatic data are used, R
0
is found to be more

sensitive and elastic to 𝑘
11
, the expected number of infected

eggs laid byAedes spp. via transovarial transmission, followed
by 𝑘
13
and 𝑘
31
for both regions Arusha and Dodoma. Table 4

shows the sensitivity and elasticity values ofR
0
for Dodoma

and Arusha climate data, and Figure 6 shows the plots of
sensitivity and elasticity against the parameters 𝑘

𝑖𝑗
.The results

call for attention to parameters regarding incubation period,
the adequate contact rate of Aedes spp. and livestock, the
infective periods of livestock and Aedes spp., and the vertical
transmission in Aedes spp.

4. Conclusion

A deterministic SEIR model of RVF has been presented to
study the impact of climate change variables mainly tem-
perature and precipitation. The model presented here is just
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Figure 4:R
0
temperature for climatic data in Arusha and Dodoma.
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Figure 5: Sensitivity and elasticity ofR
0
plotted against the low and high parameters values.
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Figure 6: Sensitivity and elasticity ofR
0
plotted against the parameters 𝑘

𝑖𝑗
for climatic data in Arusha and Dodoma.
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a simple representation of the complex ecological situation
involved in the epidemiology of RVF. The formulation of
the model, computation of R

0
, and sensitivity and elasticity

analyses of R
0
are based on the assumptions made to build

themodel aswell as the chosen parameter values. Real climate
data from Dodoma and Arusha where outbreak occured in
2006-2007 have been used to study the distribution ofR

0
in

thewhole period of the outbreak.Though the current analysis
presented in this work may not be exhaustible, it remains,
however, an important step toward the study of the impact
of climate change on the dynamics of RVF.
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